118 research outputs found

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signicantly more effcient.Warehouse Management, Order Picking, Order Batching, Iterated Local Search, Ant Colony Optimization

    A heuristic solution method for node routing based solid waste collection problems

    Get PDF
    This paper considers a real world waste collection problem in which glass, metal, plastics, or paper is brought to certain waste collection points by the citizens of a certain region. The collection of this waste from the collection points is therefore a node routing problem. The waste is delivered to special sites, so called intermediate facilities (IF), that are typically not identical with the vehicle depot. Since most waste collection points need not be visited every day, a planning period of several days has to be considered. In this context three related planning problems are considered. First, the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is considered and an exact problem formulation is proposed. A set of benchmark instances is developed and an efficient hybrid solution method based on variable neighborhood search and dynamic programming is presented. Second, in a real world application the PVRP-IF is modified by permitting the return of partly loaded vehicles to the depots and by considering capacity limits at the IF. An average improvement of 25% in the routing cost is obtained compared to the current solution. Finally, a different but related problem, the so called multi-depot vehicle routing problem with inter-depot routes (MDVRPI) is considered. In this problem class just a single day is considered and the depots can act as an intermediate facility only at the end of a tour. For this problem several instances and benchmark solutions are available. It is shown that the algorithm outperforms all previously published metaheuristics for this problem class and finds the best solutions for all available benchmark instances

    Models and Algorithms for the Integrated Planning of Bin Allocation and Vehicle Routing in Solid Waste Management

    Get PDF
    The efficient organization of waste collection systems based on bins located along the streets involves the solution of several tactical optimization problems. In particular, the bin configuration and sizing at each collection site as well as the service frequency over a given planning horizon have to be decided. In this context, a higher service frequency leads to higher routing costs, but at the same time less or smaller bins are required, which leads to lower bin allocation investment costs. The bins used have different types and different costs and there is a limit on the space at each collection site as well as a limit on the total number of bins of each type that can be used. In this paper we consider the problem of designing a collection system consisting of the combination of a vehicle routing and a bin allocation problem in which the trade-off between the associated costs has to be considered. The solution approach combines an effective variable neighborhood search metaheuristic for the routing part with a mixed integer linear programming-based exact method for the solution of the bin allocation part. We propose hierarchical solution procedures where the two decision problems are solved in sequence, as well as an integrated approach where the two problems are considered simultaneously. Extensive computational testing on synthetic and real-world instances with hundreds of collection sites shows the benefit of the integrated approaches with respect to the hierarchical ones

    A Variable Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time Windows

    Get PDF
    The aim of this paper is to propose an algorithm based on the philosophy of the Variable Neighborhood Search (VNS) to solve Multi Depot Vehicle Routing Problems with Time Windows. The paper has two main contributions. First, from a technical point of view, it presents the first application of a VNS for this problem and several design issues of VNS algorithms are discussed. Second, from a problem oriented point of view the computational results show that the approach is competitive with an existing Tabu Search algorithm with respect to both solution quality and computation time

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signi cantly more effcient

    Population-based simulation optimization for urban mass rapid transit networks

    Get PDF
    In this paper, we present a simulation-based headway optimization for urban mass rapid transit networks. The underlying discrete event simulation model contains several stochastic elements, including time-dependent demand and turning maneuver times as well as direction-dependent vehicle travel and passenger transfer times. Passenger creation is a Poisson process that uses hourly origin–destination-matrices based on anonymous mobile phone and infrared count data. The numbers of passengers on platforms and within vehicles are subject to capacity restrictions. As a microscopic element, passenger distribution along platforms and within vehicles is considered. The bi-objective problem, involving cost reduction and service level improvement, is transformed into a single-objective optimization problem by normalization and scalarization. Population-based evolutionary algorithms and different solution encoding variants are applied. Computational experience is gained from test instances based on real-world data (i.e., the Viennese subway network). A covariance matrix adaptation evolution strategy performs best in most cases, and a newly developed encoding helps accelerate the optimization process by producing better short-term results. Document type: Articl

    SavingsAnts for the Vehicle Routing Problem

    Get PDF
    Abstract. In this paper we propose a hybrid approach for solving vehicle routing problems. The main idea is to combine an Ant System (AS) with a problem specific constructive heuristic, namely the well known Savings algorithm. This differs from previous approaches, where the subordinate heuristic was the Nearest Neighbor algorithm initially proposed for the TSP. We compare our approach with some other classic, powerful meta-heuristics and show that our results are competitive

    A Single-Photon Imager Based on Microwave Plasmonic Superconducting Nanowire

    Full text link
    Detecting spatial and temporal information of individual photons by using single-photon-detector (SPD) arrays is critical to applications in spectroscopy, communication, biological imaging, astronomical observation, and quantum-information processing. Among the current SPDs1,detectors based on superconducting nanowires have outstanding performance2, but are limited in their ability to be integrated into large scale arrays due to the engineering difficulty of high-bandwidth cryogenic electronic readout3-8. Here, we address this problem by demonstrating a scalable single-photon imager using a single continuous photon-sensitive superconducting nanowire microwave-plasmon transmission line. By appropriately designing the nanowire's local electromagnetic environment so that the nanowire guides microwave plasmons, the propagating voltages signals generated by a photon-detection event were slowed down to ~ 2% of the speed of light. As a result, the time difference between arrivals of the signals at the two ends of the nanowire naturally encoded the position and time of absorption of the photon. Thus, with only two readout lines, we demonstrated that a 19.7-mm-long nanowire meandered across an area of 286 {\mu}m * 193 {\mu}m was capable of resolving ~590 effective pixels while simultaneously recording the arrival times of photons with a temporal resolution of 50 ps. The nanowire imager presents a scalable approach to realizing high-resolution photon imaging in time and space
    • …
    corecore